Closing the gap between glia and neuroblast proliferation.

By: Limmer S, Klämbt C

Developmental Cell | Volume: 30 | 249–250

Reporting in this issue of Developmental Cell, Spéder and Brand (2014) show that gap junctions are required in blood-brain barrier glial cells to reactivate proliferation of quiescent neuroblasts. Gap junctions allow synchronous Ca2+ waves and control insulin-like protein Dipl6 expression and secretion to trigger neuroblast division.


Pseudomonas aeruginosa RhlR is required to neutralize the cellular immune response in a Drosophila melanogaster oral infection model

By: Limmer S, Haller S, Lee J, Yu S, Kocks C, Ausubel FM, Ferrandon D

Proceedings of the National Academy of… | Volume: 108 | Issue: 42 | 17378–17383

An in-depth mechanistic understanding of microbial infection necessitates a molecular dissection of host–pathogen relationships. Both Drosophila melanogaster and Pseudomonas aeruginosa have been intensively studied. Here, we analyze the infection of D. melanogaster by P. aeruginosa by using mutants in both host and pathogen. We show that orally ingested P. aeruginosa crosses the intestinal barrier and then proliferates in the hemolymph, thereby causing the infected flies to die of bacteremia. Host defenses against ingested P. aeruginosa included an immune deficiency (IMD) response in the intestinal epithelium, systemic Toll and IMD pathway responses, and a cellular immune response controlling bacteria in the hemocoel. Although the observed cellular and intestinal immune responses appeared to act throughout the course of the infection, there was a late onset of the systemic IMD and Toll responses. In this oral infection model, P. aeruginosa PA14 did not require its type III secretion system or other well-studied virulence factors such as the two-component response regulator GacA or the protease AprA for virulence. In contrast, the quorum-sensing transcription factor RhlR, but surprisingly not LasR, played a key role in counteracting the cellular immune response against PA14, possibly at an early stage when only a few bacteria are present in the hemocoel. These results illustrate the power of studying infection from the dual perspective of host and pathogen by revealing that RhlR plays a more complex role during pathogenesis than previously appreciated.

Virulence on the fly: Drosophila melanogaster as a model genetic organism to decipher host-pathogen interactions.

By: Limmer S, Quintin J, Hetru C, Ferrandon D

Current Drug Targets | Volume: 12 | 978–999

To gain an in-depth grasp of infectious processes one has to know the specific interactions between the virulence factors of the pathogen and the host defense mechanisms. A thorough understanding is crucial for identifying potential new drug targets and designing drugs against which the pathogens might not develop resistance easily. Model organisms are a useful tool for this endeavor, thanks to the power of their genetics. Drosophila melanogaster is widely used to study host-pathogen interactions. Its basal immune response is well understood and is briefly reviewed here. Considerations relevant to choosing an adequate infection model are discussed. This review then focuses mainly on infections with two categories of pathogens, the well-studied Gram-negative bacterium Pseudomonas aeruginosa and infections by fungi of medical interest. These examples provide an overview over the current knowledge on Drosophilapathogen interactions and illustrate the approaches that can be used to study those interactions. We also discuss the usefulness and limits of Drosophila infection models for studying specific host-pathogen interactions and high-throughput drug screening.


Genome-wide RNAi screen identifies genes involved in intestinal pathogenic bacterial infection.

By: Cronin SJF, Nehme NT, Limmer S, Liegeois S, Pospisilik JA, Schramek D, Leibbrandt A, de Matos Simoes R, Gruber S, Puc, Urszula, Ebersberger I, Zoranovic T, Neely GG, von Haeseler A, Ferrandon D, Penninger JM

Science | Volume: 325 | Issue: 5938 | 340-343

Innate immunity represents the first line of defense in animals. We report a genome-wide in vivo Drosophila RNA interference screen to uncover genes involved in susceptibility or resistance to intestinal infection with the bacterium Serratia marcescens. We first employed whole-organism gene suppression, followed by tissue-specific silencing in gut epithelium or hemocytes to identify several hundred genes involved in intestinal antibacterial immunity. Among the pathways identified, we showed that the JAK-STAT signaling pathway controls host defense in the gut by regulating stem cell proliferation and thus epithelial cell homeostasis. Therefore, we revealed multiple genes involved in antibacterial defense and the regulation of innate immunity.